

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – C5ISR CENTER

Sensor As A Service

Steven Webster / Robert Kewley, Ph.D. / Joseph S. McDonnell, Ph.D. / Susan Harkrider

Planned Systems International (PSI) / Simlytics.cloud / Principal Scientist TRIDEUM / CCDC C5ISR

Night Vision Electronic Sensors Directorate – Modeling and Simulation Division

Distribution Statement A: Approved for public release. Distribution is unlimited.

1 Oct 2020

- Problem Statement: Current sensor simulations require a high degree of expertise to configure and modify. Analysts must rely on static configurations and performance characteristics, and often cannot model the correct sensor in a simulation.
- Problem background: Current methodology for implementing new sensor and/or target models requires off line processing, with subsequent import into constructive simulation environments. Manual process reduces resources available for individual sensor and associated collective experimentation.
- Purpose/Objectives: Make sensor representations available as a service to enable greater variability, and more rapid exploration of sensor/target engagement timelines and sensor performance within virtual, constructive and gaming applications.

- US Army Cross Functional Teams (CFTs) need the ability to represent sensors
 - Variable fidelity, multiple configurations for trade-off analyses
 - Provide performance parameters for new sensor modalities, "virtual prototyping"
- The Synthetic Training Environment (STE) CFT
 - Building the infrastructure and implementation of the next generation training capability
 - Includes simulation of sensors for weapons, navigation, situational awareness
 - Requirement to provide accurate sensor performance
- Model Based Systems Engineering (MBSE)
 - Overcomes the gap between the system model specification and the respective simulation software
 - Transitions from traditional Systems Engineering processes that are documentbased and code-centric to more effective and efficient processes that are modelbased
- Machine Learning Data Augmentation for Training and Verification
 - Provides large scale volumes of synthetic sensor data required to train AI/ML algorithms. Equivalent field collection would be cost prohibitive, time consuming, and not always possible for atmospherics. Synthetic approach also enables desireable background variations.
 - Provides verification that algorithms perform and provide correct information

SENSOR AS A SERVICE ARCHITECTURE

Container Orchestration – Kubernetes

- Private, on premise cluster
- Amazon's Elastic Kubernetes Service (EKS)
- Microsoft's Azure Kubernetes Service (AKS)
- Google's Kubernetes Engine (GKE)

Container runtime – Docker

- Open Container Initiative (OCI)
- Container Runtime Interface (CRI)

Distributions

- Rancher, chosen by NATO for experimentation
- Multiple Linux distributions (Redhat / CentOS, Debian, ...)
- Windows Server 2016(?) and 2019
- Docker for Desktop Windows development
 - Supports Linux and Windows containers
 - Integrated Kubernetes single node cluster
 - Hyper-V based
- Minikube Desktop development single node Kubernetes distribution
 - Supports Hyper-V, Virtual Box, KVM

SENSOR AS A SERVICE NV-IPM FOUNDATION

Detect - Rec -

ID

- External application interfaces
 - OneSAF, NVIG, NVLabCap, IRWindows[™]

NV-IPM SIMPLIFIED INPUT FORMAT

- Introduced simplified input files in NV-IPM
 - Build system models from a sub-set of parameters
 - Elements selected to capture largest contributions to system
- Standard definitions for targets and atmospheres
 - Vehicle / Human based on validation performance data
- Optimization of end-toend-system magnification

Farget Set	Vehicle	• 💿	
Maximum Range	10.0	kilometer	•
Range Increment	0.25	kilometer	• 🕐
Cn2	1.0E-14	m^(-2/3)	
Atmosphere Model Atmosphere Model Modtran	Modtran	•	
Atmosphere Model	Mid-Latitude Sur	nmer 🔹 💿	
Aerosol Model	Rural (Visibility	= 23 •	
Cloud Model	None	• 😨	
Sampling and Optics			
☑ IFOV	0.86 milliradians		- 7
Detector Pitch	17.0	micrometer	• 🔋
Effective Focal Length	25.0	millimeter	- ()
Aperture Diameter	100.0	millimeter	-
F-number	1.2	0	
Detector Type	Uncooled LWIR	• @	
Sigma TVH	70.0	milliKelvin	•
Sigma VH	45.0	milliKelvin	•
System Magnification	1.6	0	
Display Luminance	10.0	cd/m^2	•

- Update Sensor as a Service to fully integrate with other simulations.
 - Expand Input Application Programming Interface (API) to include simulation specifics such as image generator post processing module set.
 - Expand Results API to transform NV-IPM returns into simulation specific formats such as OneSAF, Combat XXI and NVIG sensor configurations.
 - Expand Results API to provide simulation neutral performance characteristics along with noise and blur parameters.
 - Integrate, as feasible, run time dynamic updates of consuming simulations.

• Update Sensor as a Service to provide imagery and video on demand

- Integrate NV-IPM image transformation from either live or synthesized source imagery.
 - Compose image transformation stage as desired by user.
- Enhance Night Vision Toolset API to:
 - Deeply integrate with Python compute environments (dominant in Data Science).
 - Provide higher level API supporting scene composition, viewpoint path following, and other customer driven use cases.
- Package Sensor as a Service system components as composable containers.

Collection metadata

- Reference camera sampling (pixels on target)
- Reference camera resolution (how much blur is present in original image)
- Reference camera intensity transfer (how many gray shades per degree)

Transformations

- Apply notional camera effects mapping known image to transformed image
- Internal effects include blur introduced by camera system and system noise
- External effects include atmospheric blur, motion blur, atmospheric transmission
- Range based, pixels on target, image degradations

Planned updates to image process

- Improved turbulence simulation
- Additional image distortions and processing
- Additional ranged based degradations
- Applicable to "live" and simulated imagery

IMAGE PROCESSING EXAMPLE

- Sensor as a Service enhances Digital Engineering; a few examples:
 - What sensor performance characteristics influence Man In The Loop (MITL) and / or Machine Learning (ML) Detection Classification Recognition Identification (DRI) accuracies?
 - Given weight, power, and physical package constraints, what sensor performance is possible and how does that affect force and platform battlefield outcomes?
- Sensor as a Service supports Machine Learning (ML) through Data Augmentation
 - Ground truth tagging automated when synthesizing imagery and degradation.
 - Additional variation available through image processing of atmospheric effects.
 - Mix of live or synthesized data improves ML transference to live domain.
- Composition of sensor services enables Sensor as a Service to address specific use cases without extensive reconfiguration
 - Experimentation of ML algorithms may require limited target type variation yet large variations in atmospherics.
 - Apply live imagery NV-IMP image processing to develop imagery set.
 - Development of ML algorithms to discriminate between target types in clutter may require a few targets of interest with randomly generated backgrounds.
 - Synthesize background and target set through IG automation.